Как один телескоп обнаружил сотни таинственных радиосигналов из космоса?
Впервые быстро исчезающие радиовсплески ученые наблюдали еще в 2007 году. Последующее десятилетия исследований позволили обнаружить около 140 вспышек по всей Вселенной. Немного, правда? Дело в том, что быстрые радиовсплески (FRBS) действительно трудно поймать: для этого необходимо направить радиотелескоп в нужное место в нужное время. При этом предсказать, где и когда удастся поймать всплеск неизвестно. Исследователи отмечают, что большинство радиотелескопов видят только участок неба размером с Луну в данный момент времени, что означает, что подавляющее большинство быстрых радиовсплесков остаются невидимыми. Ситуация, к счастью, изменилась, когда телескоп CHIME, расположенный в Радиоастрофизической обсерватории Доминиона в Британской Колумбии в Канаде, начал принимать радиосигналы. Это произошло в 2018 году в течение первого года работы инструмента и в конечном итоге позволило ученым создать каталог быстрых радиовсплесков. Примечательно, что каталог не только расширяет известное количество быстрых радиовсплесков, но и доступную информацию об их местоположении и свойствах.
Что такое быстрые радовсплески?
Быстрые радиовсплески (FRBS) – это очень короткие, но очень интенсивные импульсы радиоволн, регистрируемые в радиодиапазоне электромагнитного спектра, которые вспыхивают в течение нескольких миллисекунд, прежде чем исчезнуть без следа. Впервые обнаруженные только в 2007 году, эти события по-прежнему остаются загадкой для астрономов.
Интересно, что эти короткие и таинственные маяки были замечены в различных и отдаленных частях Вселенной, а также в нашей собственной галактике. Их происхождение неизвестно, а внешний вид непредсказуем. Учитывая огромное количество вопросов,которые вызывают FRBS у исследователей, данные, полученные с помощью стационарного радиотелескопа в Британской Колумбии позволили астрономам увеличить число обнаруженных радиовсплесков в четыре раза.
Телескоп CHIME, специально разработанный для канадского эксперимента по картированию интенсивности водорода, обнаружил 535 новых быстрых радиовсплесков в течение первого года своей работы, между 2018 и 2019 годами. Основываясь на имеющихся наблюдениях, исследователи полагают, что одиночные быстрые радиовсплески могут иметь источники, отличные от повторяющихся:
«Имея все эти источники, мы действительно можем начать получать представление о том, как выглядят FRBS в целом, какая астрофизика может быть движущей силой этих событий и как они могут быть использованы для изучения Вселенной в будущем», – сказала Кейтлин Шин, член CHIME и аспирант кафедры физики Массачусетского технологического института в интервью CNN.
Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram чтобы не пропустить ничего интересного!
Как работает радиотелескоп CHIME?
Телескоп CHIME функционирует немного иначе, чем другие, используемые для радиоастрономии инструменты. Массив из четырех гигантских радиоантенн, сравнимых по размеру и форме с полутрубками, используемыми для сноуборда, совершенно неподвижен. Когда Земля вращается вокруг своей оси, этот массив принимает радиосигналы с половины неба.
Как правило, радиопередатчики перемещаются, чтобы захватить свет из разных областей неба. Вместо этого CHIME использует полностью цифровую конструкцию и имеет коррелятор – цифровой сигнальный процессор для захвата входящих радиосигналов. Он может обрабатывать огромные объемы данных – около 7 терабит в секунду, что эквивалентно небольшому проценту глобального интернет-трафика. Интересно и то, что повторяющиеся вспышки радиовсплесков выглядят по-разному – каждая вспышка длится немного дольше, чем одиночные вспышки.
Читайте также: В далеком космосе обнаружены круглые, таинственные объекты
Цифровая обработка сигналов – это то, что позволяет CHIME «смотреть» в тысячах направлений одновременно. Основываясь на собранной информации, исследователи подсчитали, что эти яркие быстрые радиовсплески, вероятно, происходят около 800 раз в день по всему небу.
Составители каталога также считают, что в будущуем смогут использовать вспышки, чтобы лучше понять Вселенную и даже составить карту распределения по ней газа. Дело в том, что когда радиоволны путешествуют в пространстве, вполне вероятно, что они сталкиваются с газом или плазмой. Это может исказить волны, изменить их свойства и даже траекторию. Определение этой информации о радиовсплеске может помочь ученым оценить пройденное ими расстояние и количество газа, с которыми они столкнулись.
«Быстрые радиовсплески несут в себе запись структуры Вселенной, через которую им прошлось пройти, чтобы добраться от источника к нам», — пишут исследователи. «Из-за этого мы думаем, что они станут основным инструментом для изучения Вселенной.
При достаточно быстрых радиовсплесках, возможно, удастся составить карту крупномасштабной структуры Вселенной. «Эти большие структуры составляют нити космической паутины», — сказал Алекс Джозефи, докторант по физике в Университете Макгилла в Канаде.
«С помощью каталога FRB мы обнаружили эту корреляцию между FRB и крупномасштабной структурой. Это действительно, действительно захватывающе и открывает новую эру космологии.» О том, что представляют собой крупномасштабные структуры и могут ли они управлять Вселенной я рассказывала в этой статье.